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Abstract 

High-fidelity simulations play an increasingly important role in understanding fundamental turbulence- 
chemistry interactions and combustion dynamics in practical propulsion and power-generation systems. 
These simulations are, however, too computationally expensive and unwieldy for the purposes of design and 

optimization, given the large group of design parameters and wide design space. In this paper, we present 
an efficient surrogate-based modeling strategy to emulate spatiotemporal flows and combustion at supercrit- 
ical pressures with accuracy similar to that of large-eddy simulations (LES). A common kernel-smoothed 

proper orthogonal decomposition (CKSPOD)-based surrogate model is developed, incorporating computer 
experiments, projection-based model reduction, kriging, and uncertainty quantification. The surrogate model 
(emulator) is carefully trained using a database drawn from a set of LES-based simulations that are conducted 

at designated sampling points in a given design space. A common Gram matrix is built using a Hadamard 

product to transform reduced spatial basis functions to remedy phase deviations among different design 

settings. Kriging is then used to obtain temporal spatial functions and associated coefficients for flowfield 

reconstruction at a new design setting. 
The framework is examined with two case studies: an emulation of flow dynamics in a simplex swirl injec- 

tor, and an emulation of mixing and combustion in a gas-centered liquid-swirl coaxial injector. The surrogate 
model not only faithfully captures the salient features of its LES counterpart, but also shortens the compu- 
tation time dramatically, by up to fiv e or ders of magnitude. The de v eloped surrogate model can be applied to 

a broad range of engineering systems and will provide support for future engineering innovation and design. 
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. Introduction 

In this paper, we present an efficient model-
ng strategy to emulate spatiotemporally evolving
ows and combustion at high pressures, a surro-
ate model of high-fidelity simulations for design
urvey. High-fidelity simulations, such as direct nu-
erical simulation (DNS) and large eddy simu-

ation (LES), play an increasingly important role
n providing fundamental insight into turbulence-
hemistry interactions and combustion dynamics
n practical systems, but DNS and LES are com-
utationally prohibitive, even with today’s high-
erformance computing capabilities [1–3] . This
akes system design optimization, which often in-

olves multiple design parameters and a wide de-
ign space, a formidable task. As a result, most in-
ustrial companies still rely on low-fidelity mod-
ls, such as Reynolds-averaged Navier-Stokes or
nalytical solutions, to meet practical turn-around
imes. To this end, we develop a surrogate model
hrough emulation of LES-based simulations to
redict the spatiotemporal flowfield. The model
ot only faithfully captures salient features of its
ES counterpart, but also shortens the computa-

ion time dramatically, typically by up to fiv e or ders
f magnitude. 

Surrogate models, also known as metamodels,
ave frequently been used in design and analysis of 
omputer experiments over the last three decades
4] . Surrogate models are constructed based on
ata drawn from computer experiments, and pro-
ide fast approximations of the objectives and con-
traints at new design points, thereby making de-
ign and optimization studies feasible and econom-
cal [5] . Various statistical prediction approaches
ave been proposed to build effective surrogate
odels, including the polynomial response surface
odel, moving least squares, radial basis functions,

upport vector regression, and kriging. Surrogate-
ased methods have been reviewed comprehen-
ively several times, including for aerospace system
esign [6 , 7] and multidisciplinary design optimiza-
ion [8] . 

Most existing modeling techniques, however, fo-
us on single or multiple outputs, and surrogate
odels with functional responses have been much

ess documented in literature. Kriging, as one of the
ost promising techniques due to its interpolating

roperty, is appealing for use in modeling output
f computer experiments [5 , 9] . But it encounters a
ritical issue – the curse of dimensionality – when
ealing with high-dimensional data with functional
utputs [10] . For the prediction of spatiotemporal
owfields in combustion engines, a kriging process
eeds to handle flow information on millions of 
omputational cells and at thousands of time steps
t different design settings [11] . The resultant data
atrix is too large to process using existing models.
ata-reduction methods are thus needed before the

riging technique can be implemented. 
Many reduced-basis models have been used
to overcome the dimensionality of datasets, such
as wavelet decomposition [12] , functional linear
models [13] , and proper orthogonal decomposition
(POD) [14] . The models that project the data from
a high-dimensional space into a subspace with a re-
duced set of basis functions are called projection-
based reduced-order models (ROMs). The oper-
ators of the reduced model are constructed by
projecting the equations of the full model onto a
reduced space. Projection-based ROMs are fairly
intrusive, which means that full-model operators
need to be available explicitly or implicitly to ob-
tain ROMs at given design settings. In the present
paper, we approach projection-based ROMs in a
non-intrusive way. Instead of focusing on operators
of equations, we develop reduced POD basis func-
tions using a data-driven approach. 

POD has been widely used in dimension reduc-
tion for large-scale dynamical systems [15] ; it pro-
duces an optimal set of orthonormal basis func-
tions (POD modes) through singular value decom-
position, and minimizes the least square errors
of data reconstruction. These POD modes rep-
resent the most dominant flow dynamics in the
flowfield. A novel surrogate modeling technique,
common kernel-smoothed POD (CKSPOD) is pro-
posed and implemented here. CKSPOD builds a
common Gram matrix using a Hadamard product,
and efficiently predicts the complex flowfield over
a broad range of operating conditions and geo-
metric parameters. The CKSPOD-based surrogate
model is considered to be the crucial part of the
data-driven emulation framework for design and
optimization. Section 2 provides a detailed descrip-
tion of the CKSPOD-based surrogate methodol-
ogy. In Section 3 , the framework is applied and ex-
amined through two case studies, a simplex swirl
injector and a gas-centered liquid-swirl coaxial in-
jector. Section 4 concludes this work. 

2. Surrogate-based modeling framework 

Surrogate-based modeling is the core of the
surrogate-based design and optimization frame-
work. To enable this framework, a sampling plan
(or design space) first must be configured, based
on preliminary experiments and prior knowledge
from analytical solutions. A group of design pa-
rameters and associated value ranges are included
in the design space. The number of design settings
is then determined using design of experiments,
such as sliced Latin-hypercube design (SLHD) [16] .
Next, LES-based simulations are performed at
each design setting, and the resultant simulation
data are collected for the training of the surrogate
model. The detailed formulation of the proposed
CKSPOD-based surrogate model is provided in the
next section. 
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2.1. Projection-based model reduction 

For a sampling plan with p design parameters,
the number of design settings for training is q ,
according to design of experiment. The objective
of the present work is to emulate the spatiotem-
poral flowfield at unobserved design settings, and
the training data must accordingly include spatially
distributed flow information in different snapshots.

The POD-type projection-based model reduc-
tion is implemented to build the emulator. The
POD analysis is performed by the method of snap-
shots. We use f( x , t ) to denote the variable of inter-
est at location x and time t . All data at an observed
design setting i ( i = 1 , . . . , q ) can be represented
by a snapshot matrix, X i ∈ R 

n ×m , where n is the to-
tal number of discretized cells and m the number
of temporal snapshots. The former is much larger
than the latter for the present applications, n � m ,
which is true for most high-fidelity simulations. 

The matrix X i can be uniquely factorized
through singular value decomposition (SVD), 

X i = U i �i V 

T 
i , i = 1 , · · · , q, (1)

where U i is an n × n orthonormal matrix span-
ning X i ’s column space im( X i ), �i an n × m diag-
onal matrix of singular values, and V i an m × m or-
thonormal matrix spanning X i ’s row space im ( X 

T 
i ) .

The singular values σ1 ≥ σ2 ≥ . . . ≥ σl ≥ 0 , and
l ≤ m � n . In our case studies, the snapshot matrix
X i tends to be full rank with l = m . U i and V i are
related to the eigenvectors of X i X 

T 
i and X 

T 
i X i , re-

spectively. Denote the Gram matrix X 

T 
i X i as C i ,

and the eigenvectors of C i make up the colums
of V i ( C i = V i L i V 

T 
i ) , where L i = �T 

i �i ∈ R 

m ×m is
the diagonal matrix of eigenvalues of C i ). Follow-
ing this way, C i becomes a much smaller matrix
and its eigen-decomposition is significantly faster
than that of X i X 

T 
i . The eigenvectors V i represents

the POD temporal coefficients. The corresponding
spatial modes are deduced as �i = X i V i ∈ R 

n ×m .
The reduced POD coefficients of dimension r , V 

r 
i =

[ v 1 i , v 2 i , . . . , v r i ] ∈ R 

m ×r , are defined as the first r
column vectors of the orthonormal matrix of V i .
This selection of V 

r 
i ensures the minimization of 

the least squares error of snapshot reconstruction
and gives the reduced spatial modes matrix as �i =
X i V 

r 
i ∈ R 

n ×r . Such reduction in modes and coeffi-
cients alleviates the storage memory load signifi-
cantly and further accelerates the establishment of 
the surrogate model. 

The kernel-smoothed POD (KSPOD) tech-
nique [17] was previously proposed to estimate spa-
tial functions at unobserved design settings with
the incorporation of the POD spatial modes at ev-
ery sampling point using kriging. However, KS-
POD encounters difficulty when the POD modes
at different sampling points deviate or have phase
shift, as manifested by the element signs in the POD
mode matrix. To remedy this issue, we develop a
new approach, called CKSPOD, which transfers
the POD modes at different sampling points by 
constructing a common Gram matrix. 

2.2. Common Gram matrix 

In CKSPOD, a common Gram matrix C , which 

synthesizes the temporal information on all train- 
ing data, is constructed as the Hadamard product 
of the Gram matrices at every observed setting. A 

Hadamard operator, denoted as ◦, is the element- 
to-element multiplication of two matrices of simi- 
lar dimension, for example, [

a 11 a 12 
a 21 a 22 

]
◦

[
b 11 b 12 
b 21 b 22 

]
= 

[
a 11 b 11 a 12 b 12 
a 21 b 21 a 22 b 22 

]

Following this definition, the common Gram 

matrix is expressed as, 

C = C 1 ◦ C 2 ◦ . . . ◦ C q = VL V 

T , (2) 

where V is the column matrix of eigenvectors of 
C ∈ R 

m ×m , and L is the corresponding diagonal 
matrix. Every Gram matrix ( C i ) contains the tem- 
poral dynamics of the flowfield at the correspond- 
ing sampling point, and the common Gram matrix 
synthesizes all these temporal dynamics through 

element-wise multiplication. An inherent assump- 
tion applied in Eq. (2) is that the number of snap- 
shots ( m ) collected for each design setting is identi- 
cal. This ensures the same dimension for all Gram 

matrices, as required for the Hadamard product. If 
the computational cells for various design settings 
are different, a common grid system is required for 
the projection of data information from the origi- 
nal cells. 

Earlier KSPOD work [17] revealed that the di- 
rect incorporation of the original POD spatial 
modes at different sampling points may induce the 
cancellation effect in mode shape. The temporal co- 
efficient matrix V that incorporates the dynamic in- 
formation of all training data is used to transform 

the original spatial modes, a method to align the 
modes at different design settings. The transferred 

spatial modes of the design setting i , �′ 
i are repre- 

sented as, 

�′ 
i = X i V = X i CV L 

−1 . (3) 

Note that mode reduction is also performed 

here with the first r columns included for data 
reconstruction and the superscript r is skipped 

for brevity. With the commutative property for 
the Hadamard product, substituting Eq. (2) into 

Eq. (3) yields the connection between the trans- 
ferred spatial modes and original POD modes, 

�′ 
i = X i V i T = �i T (4) 

Here the matrix T is defined as T = 

[ L i V 

T 
i ◦ ( �q 

j=1 
j 	 = i 

C j ) ] V L 

−1 , and T can be consid- 

ered as a CKSPOD transfer matrix, which converts 
the original POD modes to the spatial functions 
at each design setting. To utilize these spatial 
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unctions properly with kriging-based weights for
ew design settings, a normalization process is
erformed on column vectors ( φ′ k 

i , k = 1 , . . . , r )
f �′ 

i , 
˜ k 

i = φ′ k 
i / 

∥∥φ′ k 
i 

∥∥
2 . (5)

Accordingly, the matrix of the transferred tem-
oral coefficients ( ̃  B i ) absorbs the normalization
actor. Once the matrices of the transferred spa-
ial functions and time-varying coefficients are de-
uced, kriging is implemented to develop the basis
unctions and coefficients for a new design setting
n the design space. 

.3. Kriging 

Kriging, a widely used surrogate-based model-
ng approach, models an unknown, deterministic
unction as a realization of a stochastic process [5] .
he kriging predictor is a best, unbiased predic-

or that is linear in sample responses and can be
onlinear in responses’ coefficients. In the present
uid flow problem, the sample responses include
he transferred spatial functions and temporal co-
fficients. For a set of design settings { d i ∈ R 

p } q i=1 ,
he observed functions of interest are weighting pa-
ameters of transferred spatial functions and corre-
ponding temporal coefficients at sampling points.
ased on the training dataset of a d i − y i pair, with
 new input d new , kriging predicts the corresponding
esponse y new . The mathematical formula of krig-
ng in terms of prediction y new is given by: 

ˆ  new = ˆ μ + r T new R 

−1 
(
y − 1 q ̂  μ

)
(6)

here ˆ μ = 1 T q R 

−1 y / 1 T q R 

−1 1 q is the maximum like-
ihood estimate of μ. 1 q is q –vector of 1 ′ s, and R
s a q × q matrix of a re-parameterized squared-
xponential correlation function whose ( i, j )-th
ntry is r ( d i , d j ) = exp { −∑ p 

k=1 θk ( d k j − d ki ) 
2 } , a

aussian-like kernel with scaling parameter θk =
4 log d k . This allows for a more numerically sta-
le optimization of maximum likelihood estima-
ors [18] . The correlation function measure is a
eighted-distance formula. When the distance be-

ween the sampling points in the input space is
mall, the correlation approaches 1. Likewise, when
he distance is large, the correlation approaches 0.
 new is a q -vector whose i th entry is the correlation
unction between the unobserved point and sam-
ling points r ( d new , d i ). 

Replacing y in Eq. (6) by the column vectors
f ˜ B i ( ̃  βk 

i , k = 1 , · · · , r ), the predicted time-
arying coefficients at unobserved design setting
ˆ 
 new ( ̂  βk 

new , k = 1 , · · · , r ) can be obtained. The
patial basis functions are calculated in a slightly
ifferent way. Kriging is used to predict the weight
f each spatial function at observed points on the
patial function at the new design setting. The ob-
ervations y are now taken to be the orthonormal
ector e i , where e i is a q -vector with 1 in its i -th ele-
ent and 0 elsewhere. Intuitively, this quantifies the
fact that the spatial mode information extracted in
the i -th design setting corresponds to only that set-
ting and not the other q − 1 settings. The resulting
predictor in Eq. (6) can be viewed as the predicted
weight for that particular spatial mode at the new
design setting d new , denoted as ˆ w new,i This procedure
is repeated for each of the q unit vectors ( e i ) 

q 
i=1 ,

from which the q weighting parameters ( ̂  w new,i ) 
q 
i=1

can be obtained. The weighting parameters are nor-
malized to ensure that their summation is equal to
unity. 

The weighting parameters are subsequently
used to predict the spatial functions at the new
design setting through a weighted average of the
transferred POD modes at the observed design set-
tings, and they are expressed as, 

ˆ φk ( d new , x ) = 

q ∑ 

i=1 

ˆ w new , i ̃  φk 
i (7)

Instead of applying universal POD modes in
CPOD [19] , we implement weighting functions to
transferred POD spatial modes with a common
Gram matrix and a kernel-smoothed algorithm, re-
ferred to as common kernel-smoothed POD (CK-
SPOD). Combining time-varying coefficients and
spatial functions obtained using Eqs. (6) , (7) , the
predicted spatiotemporal flowfield at a new design
setting is 

ˆ X ( d new , x , t ) = 

r ∑ 

k =1 

ˆ φk 
(

ˆ βk 
)T 

= 

ˆ � ˆ B 

T , (8)

with 

ˆ X ( d new , x , t ) ∈ R 

n ×m . Eq. (8) emulates the
spatiotemporal flowfield at a new design setting in a
physics-based data-driven way without performing
a new high-fidelity simulation. A key advantage of 
kriging is that it does not just predict the spatiotem-
poral flowfield at unobserved design settings, but it
also allows quantification of the uncertainty asso-
ciated with the prediction. 

2.4. Uncertainty quantification (UQ) 

In this work, we assume that the database drawn
from high-fidelity LES simulations is reliable and
accurate, and the uncertainty of statistical predic-
tion primarily comes from model reduction and the
kriging process. Previous work [18] has shown that
invoking the conditional distribution of the multi-
variate normal distribution, the kriging-predicted
time-varying coefficients at a new design setting
follow a Gaussian distribution, ˜ β( d new ) |{ ̃  β( d i ) } q i=1 ∼
N( ̂  β, ˆ �) . Here the kriging predictor ˆ β for ˜ β( d new )
has been defined in Eq. (6) , and its corresponding
variance is given by, 

ˆ � = 

(
1 − r T new R 

−1 r τ, new 
)
T (9)

where I m 

, 1 q and T are the m × m identity matrix,
1-vector of q elements, and r × r covariance matrix,
respectively. 
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Similarly, the variance associated with the
weights of the predicted spatial functions during
kriging at a new design setting can be also repre-
sented by Eq. (9) , but with T as identity matrix. The
UQ of the final prediction using Eq. (8) can be cal-
culated through the propagation of UQs of time-
varying coefficients and spatial functions weights.
The spatiotemporal variance is expressed as, 

V 

{ X ( x , t; d new ) } 
∣∣{ X ( x , t; d i ) } q i=1 

= 

r ∑ 

k=1 

V 

{ 
˜ βk ( d new ) 

∣∣∣{ ˜ β( d i ) 
} q 

i=1 

} 

q ∑ 

i=1 

V 

{
w ( d new ) 

∣∣{ w ( d i ) } q i=1 

}{ 
˜ φk 

i ( x ) 
} 2 

(10)

3. Case study 

In the present study, we examine two repre-
sentative cases of swirl-related flows to validate
the surrogate-based modeling framework, since
swirling flows have been widely used to stabilize
combustion in aerospace propulsion and combus-
tion [20] . The first validation case is to emulate flow
dynamics in a simplex swirl injector, while the sec-
ond case is to emulate the mixing and combustion
flowfield in a gas-centered liquid swirl injector. The
operating pressure of both cases is set as supercrit-
ical for two reasons. First, this pressure condition
is encountered in many advanced propulsion en-
gines, such as liquid rockets and gas turbines. Sec-
ond, higher pressure implies higher Reynolds num-
ber and a wider range of turbulent scales to resolve,
leading to a computationally more challenging task
[11 , 21] . The theoretical and numerical framework
for LES-based high-fidelity simulations of super-
critical fluid flows and combustion has been de-
tailed in previous publications [11 , 21] and is not
elaborated here. 

3.1. Simplex swirl injector 

A schematic of a simplex swirl injector is shown
in Fig. 1 . Liquid oxygen (LOX) at 120 K is in-
jected tangentially into a supercritical oxygen en-
vironment at 300 K and 10 MPa through discrete
orifices, which are simplified into a single radial slit
for cylindrical sector configuration with periodic
Fig. 1. Schematic of swirl injector. 
boundary condition specified in the azimuthal di- 
rection. The slit width is correlated to the orifice 
diameter ( D in ) through mass conservation. An ear- 
lier parametric study [19] has identified three design 

parameters that are important to injector perfor- 
mance: inlet slit width ( δ), inlet injection angle ( θ ), 
and distance between inlet slit and injector head- 
end ( �L ). The design ranges of δ and θ are selected 

based on the desired performance metrics (spread- 
ing angle and film thickness), according to the em- 
pirical model. δ ranges from 0.27 mm to 1.53 mm, 
θ ranges from 35.0 ° to 62.2 °, and �L is varied from 

0.85 mm to 3.4 mm. With the selected design pa- 
rameters and associated ranges, the SLHD is then 

implemented to generate 30 design settings based 

on the 10 p rule-of-thumb. Another 2 design set- 
tings (with values of (1.20 mm, 41.97 °, 0.90 mm) 
and (0.49 mm, 57.12 °, 2.88 mm), respectively) were 
selected for validation purposes. LES-based simu- 
lations were performed at all (30 + 2) design settings, 
producing a large spatiotemporal database for the 
training of the CKSPOD-based surrogate model. 
For every design setting, 1000 flow snapshots were 
collected in the time period of 10 ms after the flow 

reaches a statistically stationary state. 

3.1.1. CKSPOD prediction 
Figure 2 shows a comparison of instantaneous 

density distributions between LES and CKSPOD 

in Cases 1 and 2. The two validation cases are se- 
lected to represent two distinct flow patterns and 
Fig. 2. Instantaneous density distributions: LES and CK- 
SPOD in Cases 1 and 2. 
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Fig. 3. Spatial distributions of time-averaged TKE from 

LES (top) and CKSPOD (middle) and associated stan- 
dard deviation (bottom) in Case 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ynamics in a simplex swirl injector. The swirl-
nduced centrifugal force drives the LOX film to
ow along the injector surface and a low-density
as-like core forms in the center region. In this su-
ercritical pressure environment, the density varies
moothly in the radial direction from a liquid state
ear the wall to a supercritical (gas-like) state in
he core region. The interfacial region shows signifi-
antly different vortical structures in different cases.
etailed discussion on LOX swirling flow dynam-

cs can be found in Ref. [22] . 
Liquid film thickness and spreading angle are

wo important factors that determine mixing ef-
ciency and flow dynamics. As shown in LES
esults, Case 1 with smaller θ results in thicker liq-
id film thickness and smaller spreading angle at
he injector exit than Case 2. In both validation
ases, the overall prediction by CKSPOD shows ex-
ellent agreement with simulation by LES. The lig-
ments and wrinkled structured on the surface of 
he liquid film in the injector are well captured in
ase 1, and a row of vortex rolling motions is ac-

urately predicted in Case 2. Downstream of the
njector, the spreading of the liquid film and the
rowth of vortical structures along the liquid film
re predicted very well. Although the CKSPOD
rediction of dynamical structures in the flowfield

s promising, however, the numerical values of den-
ity in the circled regions are underestimated in
oth cases. It is possible that adding more sampling
oints near the validation cases could improve the
rediction. 

.1.2. Uncertainty quantification 
Table 1 shows a comparison of averaged film

hickness and spreading angle for LES-based sim-
lation and CKSPOD-based emulation in both
ases. Note that these values were taken from the
veraging of 1000 snapshots of simulations and
mulations at the injector exit. It is seen that the
redicted film thickness and spreading angle have
elative errors less than 1% in Case 1 and less than
.1% in Case 2. Further analysis was conducted
n the axial distribution of the liquid film sur-
ace, and local relative errors are less than 3% (not
hown here). The magnitude of the relative errors
s similar, implying the high fidelity of the present
KSPOD-based emulator. 

The quantification of the prediction uncertainty
s demonstrated using a derived flow property, tur-
ulent kinetic energy (TKE). Figure 3 shows
able 1 
rediction of averaged film thickness and spreading angle. 

Case number 1 2 

film 

thickness 
LES 0.637 0.471 
CKSPOD 0.640 0.471 

spreading 
angle 

LES 52.566 57.778 
CKSPOD 52.657 57.750 

 

 

 

 

 

 

 

 

 

 

time-averaged spatial distributions of TKE from
LES and CKSPOD, along with the standard devia-
tion of the CKSPOD result in Case 1. In LES, high
TKE values occur along the surface of the liquid
film and near the center region of the injector
exit; this is caused by strong shear-layer dynamics
and flow recirculation in these regions [22] . The
CKSPOD prediction bears close resemblance to
the LES TKE distribution with major features
captured. Further evidence can be seen from the
standard deviation for CKSPOD prediction, which
was calculated according to the variance defined
in Eq. (10) . A smaller standard deviation denotes
a lower uncertainty of prediction. The regions
with most uncertain predictions coincide with the
regions with most intense dynamics. The maximum
of standard deviation is close to 5, compared to
the maximum TKE of around 500. 

3.1.3. Computation time 
The motivation for developing a surrogate-

based model is to reduce the prohibitive compu-
tation time required for high-fidelity simulations
for design purposes. For the present axisymmet-
ric LES-based simulations, the computation time at
different design settings varies from 10 to 14 days
on around 320 CPUs. In comparison, the time re-
quired to build the surrogate model is about 73 min
on 10 CPUs, and the time for emulating a new case
using the developed surrogate model is only 7 min
on 5 CPUs. Therefore, the time saving of emulation



X. Wang, Y.-H. Chang and Y. Li et al. / Proceedings of the Combustion Institute 38 (2021) 6393–6401 6399 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

is about 5 orders of magnitude, compared to simu-
lation. 

3.2. Gas-centered liquid-swirl coaxial (GCLSC) 
injector 

Mixing and combustion of gaseous oxygen
(GOX) and kerosene at supercritical pressure
( p = 25.3 MPa) offers a second representative case
for emulation. The flow dynamics and combus-
tion of GCLSC injectors have been systematically
investigated in previous work [23-25] . Figure 4
shows a schematic of the region of interest for
emulation of mixing and combustion dynamics.
Note that this region only covers a part of a
GCLSC injector, where important physics, includ-
ing fuel-oxidizer mixing and flame anchoring, are
involved. (The region could easily be extended if 
needed.) 

Yang and colleagues [23 , 24] have identified the
recess length ( L r ) as one of the most important
design parameters for mixing and combustion
efficiencies. For demonstration purposes, there-
fore, recess length is regarded as the single design
parameter for the surrogate model. The theoretical
range of L r is from 0 (no recess) to L f (fully re-
cessed). A total of 12 design settings were produced
in the range of 0 < L r < L f , where L f = 16 mm. The
cases with no recess and full recess are excluded
here as outliers, because earlier studies [23 , 24]
have found that those two cases show significantly
different flow and flame dynamics from other
cases. One setting with L r = 8.75 mm is selected as
the validation case, and the remaining 11 design
settings are training cases. Since only one design
parameter is involved for this case study, weighting
parameters are calculated differently from the
previous case. An inverse distance weighting is
applied, ˆ w i ( d new , d i ) = 1 / | d new − d i | 2 . 

The training database includes 1000 flow snap-
shots in a time span of 10 ms for the pure-mixing
case and 400 flow snapshots in 4 ms for the combus-
tion case. A special treatment of the irregular grid
system is needed before model reduction and krig-
ing. With the variation of recess length, the com-
Fig. 4. Schematic region of a GCLSC injector for emula- 
tion. 
putational grid in Zone 1 changes, since the recess 
region next to the GOX post tip that is a grid sec- 
tion in cases with longer recess is represented as a 
part of the post in cases with shorter recess. To this 
end, we establish a common grid system for all de- 
sign settings, into which all simulation data are pro- 
jected. The data in Zone 1 is divided into 3 subzones 
(GOX post, recess, fuel passage), and each subzone 
is projected into the respective subzone in the com- 
mon grid system. This technique is particularly use- 
ful with design spaces involving varying geometries 
or different grid systems [18 , 19] . 

3.2.1. CKSPOD prediction 
Figure 5 shows instantaneous density distribu- 

tions from LES and CKSPOD in the pure-mixing 
case. The results predicted by CKSPOD capture 
the primary characteristics of the mixing field, such 

as the overall shape of the central GOX core, the 
kerosene film development along the fuel passage 
and injector surface, and large coherent structures 
in the mixing layer. A detailed discussion on model 
performance and uncertainty quantification will be 
presented in a future paper. 

Figure 6 shows a comparison of instantaneous 
temperature distributions in the combustion case. 
The CKSPOD-based surrogate model successfully 
predicts the flame anchoring near the GOX post 
tip. The wrinkled flame shape is roughly captured 

in the recess and taper regions. The prediction ac- 
curacy appears lower than that in pure-mixing case, 
but this could be improved by including more snap- 
shots at all sampling points. Note that LES-based 

simulation is extremely challenging in the combus- 
tion case at supercritical pressure, in terms of com- 
putational time and numerical convergence. 

To further quantify accuracy, Figure 7 shows 
a comparison of contour lines of the averaged 

mixture-fraction field in the combustion case. The 
contour line of 0.225 represents the stoichiometric 
mixing line, which is often used to denote the flame 
surface in flamelet-based combustion models. The 
Fig. 5. Instantaneous density distributions from LES 
(top) and CKSPOD (bottom) in pure-mixing case. 
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Fig. 6. Instantaneous temperature distributions for LES 
(top) and CKSPOD (bottom) in combustion case. 

Fig. 7. Contour lines of averaged mixture-fraction field 
for LES (solid lines) and CKSPOD (dashed lines): 
overview (top) and zoomed-in view (bottom). 
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KSPOD-predicted contour lines match the LES
esults well, except in the upper region of the taper,
here the current 400 snapshots in 4 ms is proba-
ly insufficient to obtain an averaged distribution.
onetheless, the zoomed-in view in the recess re-

ion shows excellent agreement between CKSPOD
nd LES at all contour levels. This demonstrates
he accuracy of both the common grid system and
he CKSPOD-based emulation. 

.2.2. Computation time 
For cold flows, the LES-based simulations re-

uire approximately 100,000 CPU hours for a time
pan of 10 ms (1000 snapshots), as compared to
2 CPU hours for the training of the surrogate
odel and 60 s of CPU time for each snapshot of 

rediction using the CKSPOD-based model. The
KSPOD-based model is roughly 6000 times faster

han LES-based simulations. The speedup is more
significant for reacting flows for the same time span,
due to the fact that LES-based simulations require
much smaller time-marching steps in numerical cal-
culations. 

4. Conclusion 

A novel surrogate model, common kernel-
smoothed proper orthogonal decomposition (CK-
SPOD), is proposed for emulation of large eddy
simulations of turbulent flows and combustion at
supercritical pressure. The CKSPOD-based frame-
work is multi-disciplinary, incorporating high-
fidelity simulations (computer experiments), de-
sign of experiment, projection-based model reduc-
tion, kriging, and uncertainty quantification (UQ).
It leverages the implementation of the Hadamard
product to build a common Gram matrix that is
used to transfer and align POD spatial modes at
training design settings. The prediction of the spa-
tiotemporal flowfield at a new design setting is ful-
filled through data reconstruction of spatial modes
and coefficients obtained via kriging. The UQ as-
sociated with kriging is detailed. Two validation
cases are presented; one is to emulate the flow dy-
namics of a simplex swirl injector, and the other
is to emulate the mixing and combustion of a gas-
centered liquid-swirl coaxial injector (GCLSC). In
the simplex swirl injector case, excellent agreement
is achieved between the emulated results and LES
results, in terms of instantaneous flow distribu-
tion, large-coherent structures, and injector perfor-
mance metrics. Large uncertainty occurs in regions
of shear layers and center flow recirculation. In the
GCLSC case, the overall predictions of mixing and
combustion are promising. The location of flame
anchoring is captured, and the contour lines of the
averaged mixture fraction field are accurately pre-
dicted. Accuracy could be further improved by in-
cluding more snapshots in the training database. 
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